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ABSTRACT
Humans have a unique ability to produce and consume rich, complex, and varied language in order
to communicate ideas to one another. Still, outside of natural reading, the most common methods
for studying how our brains process speech or understand language use only isolated words or
simple sentences. Recent studies have upset this status quo by employing complex natural
stimuli and measuring how the brain responds to language as it is used. In this article we argue
that natural stimuli offer many advantages over simplified, controlled stimuli for studying how
language is processed by the brain. Furthermore, the downsides of using natural language
stimuli can be mitigated using modern statistical and computational techniques.
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A fundamental goal in neuroscience is to discover how
the human brain understands and produces language.
The methods used to study processes in the human
brain have advanced considerably over the past
decades. Advancements in neuroimaging and neural
recording technologies have made it possible to
measure brain responses with higher fidelity and spatio-
temporal resolution, and modern analysis techniques
have made it possible to analyze larger and more
complex datasets. Yet many—if not most—experimental
designs in neurolinguistics are still rooted in the tech-
niques of the past: comparing brain responses to isolated
words or simplified sentences. One alternative is to
perform experiments using natural language stimuli,
with connected sentences that approximate or draw
directly from language as it is used in everyday life.
Outside of neuroscience, highly natural approaches
have already found use in conversation analysis (CA),
where natural social conversations are analysed qualitat-
ively (Kendrick, 2017; Schegloff, Koshik, Jacoby, & Olsher,
2002). Natural stimuli have also been used widely in
studies concerned with the neural processes that
underlie reading behaviours (Kliegl, Dambacher,
Dimigen, Jacobs, & Sommer, 2012). But for studies that
probe how the brain understands language or processes
speech, natural stimuli have found only limited use. A
few recent studies have shown that conclusions based
on simplified or highly controlled language stimuli may

not apply to data collected using natural language, or
that similar conclusions can be reached more efficiently
using natural language (Huth, de Heer, Griffiths, Theunis-
sen, & Gallant, 2016; Lerner, Honey, Silbert, & Hasson,
2011; Wehbe et al., 2014).

Recent efforts to use natural language stimuli in
neuroscience closely echo debates that occurred in
visual neuroscience over the past 20 years. That field
was dominated for decades by an experimental
approach in which tightly controlled visual stimuli were
used to study receptive field properties of neurons in
visual cortex. This was successful in characterising
many properties of the visual cortex, including retinoto-
pic representations of the visual field, ocular dominance
columns, the receptive field properties of simple and
complex cells in the visual pathway, and more. Yet
over time it became clear that many effects assumed
to be universal were actually highly dependent on the
tightly controlled stimuli, and were diminished or
absent in experiments that used natural visual stimuli
(David, Vinje, & Gallant, 2004). Recently many visual
neuroscience experiments have begun to use more
natural stimuli either to construct or test models of
visual processing (Geisler, Perry, Super, & Gallogly,
2001; Kay, Naselaris, Prenger, & Gallant, 2008; Nishimoto
& Gallant, 2011; Rao & Ballard, 1999).

The changes in vision neuroscience were spurred
largely by technology. Both measurements of brain
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activity and computational resources have improved dra-
matically in recent years, making it feasible to fit complex
computational models to brain data. These same tech-
nologies are available to language researchers, so there
has never been a better time to start the natural
language revolution. In this paper we will describe
some procedures for analyzing data from experiments
that use natural language stimuli, then we will provide
statistical arguments for widespread adoption of these
procedures. We will then present some caveats of the
experimental methods and suggestions for moving
forward, and will close by discussing a few key results
that have come from natural language experiments.

What constitutes natural language in perception?

Before discussing how natural language stimuli are used
in neuroscience research it is important to clarify what
we mean by the term. In “real life” situations (Matusz,
Dikker, Huth, and Perrodin, 2018), using natural language
would involve listening, speech production, turn taking,
and many other communicative signals, including non-
linguistic utterances and gestures. However, here we
focus only on the more limited domain of natural
language perception. We propose that naturalness of a
stimulus lies along a spectrum and can be gauged by
answering three questions. First, is this a stimulus that
a person might reasonably be exposed to outside of an
experimental setting? Second, does the stimulus
appear in the same context as it would in real life?
Third, is the subject’s motivation for perceiving and
understanding the stimulus particular to the experimen-
tal setting, or is it a motivation that the subject would feel
in real life? Here, we consider several types of language
stimuli through the lens of these questions.

Isolated words
Many experiments use isolated word stimuli, and ask
subjects to perform specific tasks such as rating
whether it is a word or non-word (Binder, Desai,
Graves, & Conant, 2009). Clearly humans are able to
understand and reason about isolated words, but this
type of stimulus fails at least two questions of natural-
ness. While single-word utterances are not uncommon
in real-world settings, they are most often generated
by pre-grammatical children, adults who are answering
questions (“Yes” or “No”), or as imperative statements
(e.g. “Duck!”) (Greenfield, 1978). These natural single-
word utterances have pragmatic contexts that are
missing in an experimental setting. Furthermore, exper-
imental tasks such as judging words vs. nonwords are
far from ethological.

Isolated sentences
Many experiments use isolated sentences as stimuli
(Anderson et al., 2016; Hamilton, Edwards, & Chang,
2018; Just, Wang, & Cherkassky, 2017; Mesgarani,
Cheung, Johnson, & Chang, 2014). These stimuli are
often drawn from real-world sources, so they clearly
pass the first criterion. However, it is relatively uncom-
mon in real life to hear sentences such as “The couple
laughed at dinner” divorced from any context whatso-
ever. Because subjects have little intrinsic motivation to
comprehend or process decontextualised sentences,
these experiments often include tasks, such as deciding
whether a sentence is grammatical. Such tasks are a
form of motivation that is not common in real life. Iso-
lated sentences thus are clearly more natural than iso-
lated words, but they still not completely natural.

Complete narrative stories
Several recent experiments have used complete narra-
tive stories or book chapters as stimuli (de Heer, Huth,
Griffiths, Gallant, & Theunissen, 2017; Honey, Thompson,
Lerner, & Hasson, 2012; Huth et al., 2016; Lerner et al.,
2011; Wehbe et al., 2014). These stimuli are drawn from
real-world sources, so they automatically pass the first
question. Complete narratives also ensure that every sen-
tence occurs in a natural context, passing the second
question. And drawing stimuli from popular entertain-
ment sources such as Harry Potter (Wehbe et al., 2014)
or The Moth (de Heer et al., 2017; Huth et al., 2016;
Lerner et al., 2011) helps address the issue of motivation,
since many people choose to consume those stimuli
voluntarily for no reason other than to comprehend
them. This type is the most natural language stimulus
that has been used in laboratory neuroscience exper-
iments. (However, recent work has begun to examine
language and social interaction in a natural setting,
going a step further toward truly natural neuroscience
(Bevilacqua et al., 2018).)

Before closing this section we note that how one
interprets the questions we posed about naturalness
depends on the goal of the research. For example, in a
study designed to probe phonological representations,
narrative stories might be considered no more natural
than isolated sentences. It is unlikely that phoneme rep-
resentations rely on more context than could be pro-
vided by a sentence, and the question of motivation
becomes less well-defined for phoneme processing
than it is for language understanding. But even though
isolated sentences may be sufficiently natural to study
phoneme representations without any penalty, there
may be little downside to using more contextualised
stimuli such as narrative stories, as long as they contain
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sufficient variation in phonetic content. Similarly, a study
designed to probe high-level semantic and syntactic rep-
resentations might present narrative stories using a con-
trolled presentation paradigm such as serial visual
presentation (SVP) instead of natural reading. This
could still be considered natural language for the
purpose of the study, since the high-level processes in
question are likely insensitive to the presentation
method.

Statistical methods for natural stimulus
experiments

One profound issue that has undoubtedly delayed the
widespread adoption of natural language in neuro-
science experiments is that the data often cannot be
analysed using the same techniques that are used for tra-
ditional controlled experiments. Traditional experiments
are typically constructed such that the data can be ana-
lysed using statistical techniques such as t-tests, F-tests,
or ANOVAs. However, these methods are poorly suited
for most natural stimulus experiments because they
cannot control for confounding or correlated variables
(Although there have been instances where these tech-
niques have been used to great effect with carefully con-
structed narratives (Saxe & Kanwisher, 2003).) Thus, it is
common for natural language experiments to employ
other statistical techniques. Here we will briefly describe
three techniques that have been used to study how the
brain processes natural language stimuli: encoding
models, unsupervised dimensionality reduction, and
inter-subject correlation.

Encoding models are quantitative, mathematical
models that are designed to predict brain responses
based on the stimuli that elicited them (Naselaris, Kay,
Nishimoto, & Gallant, 2011). These models typically
have a number of free parameters that are estimated
using one dataset, termed the “training dataset”. The
free parameters are then fixed, and this encoding
model is used to predict brain responses in a “validation
dataset” that was not used during parameter estimation.
Encoding model performance can then be assessed by
comparing predicted and actual responses in the held-
out validation dataset (using, for example, Pearson corre-
lation). Variants of this technique have been used for
decades for auditory electrophysiology (Aertsen &
Johannesma, 1981; Ahrens, Linden, & Sahani, 2008; Car-
ruthers, Natan, & Geffen, 2013; Theunissen, Sen, &
Doupe, 2000). More recently, encoding models have
been applied to a number of different language-related
questions in fMRI (de Heer et al., 2017; Huth et al.,
2016; Kandylaki et al., 2016; Mitchell et al., 2008;
Wehbe et al., 2014), ECoG (Berezutskaya, Freudenburg,

Güçlü, van Gerven, & Ramsey, 2017; Cheung, Hamilton,
Johnson, & Chang, 2016; Hamilton et al., 2018; Holdgraf
et al., 2017; Hullett, Hamilton, Mesgarani, Schreiner, &
Chang, 2016; Mesgarani et al., 2014; Tang, Hamilton, &
Chang, 2017), and EEG (Crosse, Di Liberto, Bednar, &
Lalor, 2016; Di Liberto, O’Sullivan, & Lalor, 2015). In
fMRI, this technique is sometimes known as voxel-wise
modelling (VM) (Huth et al., 2016); it may also be called
a multivariate temporal response function (Crosse, Di
Liberto, Bednar, et al., 2016) or spectrotemporal recep-
tive field models (STRFs) in the auditory domain
(Aertsen & Johannesma, 1981).

There are many different forms of encoding models
(Holdgraf et al., 2017; Wu, David, & Gallant, 2006), but
the most common variant is the “linearised model”. In
linearised models, features are extracted from the
stimuli using any available technique (e.g. hand-labeling,
automatic labelling, or unsupervised statistical methods).
These features are then combined by a linear regression
model that attempts to predict brain responses. Line-
arised models have demonstrated the existence of
strong spectrotemporal and phonetic feature represen-
tations in superior temporal gyrus (de Heer et al., 2017;
Di Liberto et al., 2015; Hullett et al., 2016; Mesgarani
et al., 2014) and motor cortex (Cheung et al., 2016), inde-
pendent representations of pitch intonation information,
speaker identity, and sentence identity in bilateral
superior temporal gyrus (Tang et al., 2017), and semantic
representations across a wide swath of cortex (Huth
et al., 2016). They have also shown how spectrotemporal,
articulatory, and semantic information contribute to the
generation of neural signals in different cortical areas
(de Heer et al., 2017), and how feature representations
may be modulated by attention (Fritz, Elhilali, David, &
Shamma, 2007; Mesgarani & Chang, 2012; O’Sullivan,
Reilly, & Lalor, 2015), intelligibility (Holdgraf et al., 2016;
Khoshkhoo, Leonard, Mesgarani, & Chang, 2018), or
behavioural context (David, 2017).

While encoding models provide a good way of testing
the relative contributions of one set of features versus
another in predicting brain responses, the features of
interest are not always known a priori. Thus, researchers
may want to use unsupervised methods to analyze their
neural data that do not impose a predefined set of fea-
tures. For example, unsupervised dimensionality
reduction techniques such as convex non-negative
matrix factorisation (cNMF, (Ding, Li, & Jordan, 2010))
can be used find spatiotemporal patterns of brain activity
that can later be correlated with specific stimulus fea-
tures (Hamilton et al., 2018). In Hamilton et al., for
example, the researchers played naturally spoken sen-
tences to patients with implanted intracranial electrodes
covering language-related cortical areas including
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superior temporal gyrus, and then used cNMF to find
patterns of neural activity that were consistent across
participants listening to the same natural sentences. An
advantage of this unsupervised analysis is that they
could discover features of interest without imposing a
specific hypothesis about the main drivers of neural
activity. They found that neural activity was grouped
into two major response types: “onset” related activity,
found more posteriorly, and “sustained” activity, found
anteriorly. When correlating these with known acous-
tic-phonetic features, they found the “onset” electrodes
responded strongly at sentence and phrase onsets, and
that phonetic feature responses in this area were
highly adapting and context-sensitive. The “sustained”
electrodes, in contrast, were active throughout the sen-
tence and did not show distinct responses to phonetic
content at the beginning vs. at the middle of the sen-
tence. Perhaps most importantly, this “onset” and “sus-
tained” distinction is not easily appreciated using
simpler, shorter stimuli such as consonant–vowel (CV)
syllables. With CV syllables (and also with short, single
words), it is difficult to appreciate the larger response
at the onset, since there is no continuous information fol-
lowing the syllable, and effectively every stimulus is an
onset. Again, this research points to the importance of
using natural stimuli in order to uncover these response
types that would only be seen in longer, more complex
stimuli.

A third technique that has been applied to natural
stimulus experiments is inter-subject correlation (ISC)
(Hasson, Nir, Levy, Fuhrmann, & Malach, 2004; Honey
et al., 2012; Lerner et al., 2011; Silbert, Honey, Simony,
Poeppel, & Hasson, 2014). In this technique brain
responses are recorded from multiple subjects while
they are presented with natural stimuli. For each brain
area, response time courses from different subjects are
correlated to determine whether the responses are
similar across subjects. This method provides an estimate
of the “signal-to-noise ratio” for a particular stimulus in
each brain area, while being agnostic to the temporal
profile of the response. This is somewhat different from
the information that is offered by more traditional con-
trast-based approaches, in that ISC is a function of the
temporal pattern of the response in addition to response
size. Sensitivity to temporal patterns means that ISC can
be used to study responses at timescales up to minutes,
whereas traditional approaches are generally limited to
relatively short stimulus blocks. In (Lerner et al., 2011),
for example, ISC was used to compare the reliability of
stimulus-evoked responses across stimuli that had
varying amounts of temporal context from single
words to a complete 10-minute narrative. This showed
that the stimuli with the most temporal context—the

most natural stimuli—evoked responses across a much
larger expanse of cortex than the other stimuli.

Like unsupervised methods, ISC does not require the
specification of a feature space, making this technique
simple to apply. It also has the advantage of being more
computationally simple than unsupervised methods
such as cNMF. However, ISC has the same downside as
unsupervised methods: it can tell you that a brain area
responds consistently to a stimulus, but not why. ISC
also has a further constraint in that it assumes that brain
areas are matched accurately between subjects, usually
using anatomical co-registration. If this co-registration is
faulty, then one would observe low ISC even if the under-
lying brain responses were highly similar. However, tech-
niques such as hyperalignment (Haxby et al., 2011)
promise to correct this issue.

Statistical arguments for natural stimuli

Generalisability

A scientific result is only useful if it is generalisable, in the
sense that similar effects should be observed using other
stimuli or other subjects. As mentioned previously,
results based on simplified, non-natural stimuli such as
words or isolated sentences may fail to generalise. If
our goal is to understand how the brain processes
language in ethological settings, then we should be con-
cerned with whether experimental results generalise to
all natural language stimuli. Here experiments based
on natural language stimuli have a clear advantage.
The only barrier to generalisation is that results obtained
from one domain of natural language may not apply to
other domains. This drawback can be mitigated by
sampling stimuli broadly.

Failures to generalise from simple stimuli to complex
natural stimuli arise from the fact that brain responses at
any moment are a nonlinear function of current and pre-
vious stimuli (Leonard, Baud, Sjerps, & Chang, 2016;
Lewicki & Arthur, 1996; Williamson, Ahrens, Linden, &
Sahani, 2016). Thus it is difficult, for example, to predict
the response to a series of words knowing only the
response to each word in isolation. The only way to
understand the nonlinear functions implemented by
the brain, and thus to predict responses to natural
language, is to learn from responses to natural language
stimuli that include those nonlinear contextual effects.

Effect size

One point that is frequently raised in statistical critiques
of neuroscience and psychology is that too much atten-
tion is paid to statistical significance and too little to
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effect size (Button et al., 2013; Carver, 1993). Effect size
provides information about the importance of an
effect, while significance provides information about its
reliability. However, it is difficult to compare effect sizes
across experiments that use different methodologies,
different types of stimuli, different numbers of subjects,
or involve different areas of the brain. For example, the
superior temporal gyrus (STG) has been shown to rep-
resent many different features present in speech, but
comparing these representations across studies is
nearly impossible. This problem is made especially
acute by the small stimulus sets used in many exper-
iments, which likely inflate significance and could alter
effect size (Westfall, Nichols, & Yarkoni, 2016).

Natural stimuli provide a solution to this problem by
providing a gold-standard measure—the fraction of var-
iance in responses to natural stimuli that can be
explained, or natural effect size—that captures both the
validity and importance of an effect. Every hypothesised
effect can be framed as a model of how the brain
responds to natural language in perception or pro-
duction. For example, one might hypothesise that
abstract and concrete words elicit different brain
responses. In an experiment employing natural stimuli,
each word in a narrative could be tagged as “abstract”
or “concrete”, yielding two features that could be used
to estimate predictive encoding models. One would
then use the fitted model to predict responses on a
new natural language dataset, and compute the
natural effect size as the fraction of variance in the new
dataset predicted by the model. This value could then
be directly compared to other effects—such as
phoneme content, syntactic properties, or prosodic con-
tours—because each effect can be instantiated as a
model of the same, natural dataset.

Experimental efficiency

In most controlled experiments, the hypothesis that is
being tested is built into the experimental design. This
is typically done by constructing experimental conditions
that differ on one variable, such as whether they contain
a semantically incongruent word, but are matched on as
many other variables as possible. This type of experiment
provides high statistical power for addressing the
hypothesis of interest, but is essentially useless for
testing most other hypotheses.

Natural language experiments are typically designed
without a specific hypothesis in mind, but instead
sample stimuli broadly from some domain. Natural
stimuli differ on many variables, but the amount of vari-
ation is limited, and some variables will have more vari-
ation in natural stimuli than others. For example, most

natural language stimuli contain relatively few errors of
semantic congruity. This type of experiment thus has
reduced power for testing any particular hypotheses rela-
tive to a controlled experiment designed for that hypoth-
esis. However, because it is not designedwith a hypothesis
inmind, a single natural language experiment can be used
to test many different hypotheses. This renders exper-
iments employing natural stimuli more efficient. Further-
more, using the same dataset to examine different
hypothesesmakes it possible to compare and disentangle
the contributions of different variables, such as semantic,
phonological, and spectrotemporal features (de Heer
et al., 2017), or pitch vs. speaker vs. sentence identity
(Hamilton et al., 2018; Hullett et al., 2016; Mesgarani
et al., 2014; Tang et al., 2017).

Statistical caveats in natural language
experiments

While natural language experiments offer many advan-
tages over traditional experimental paradigms, they are
not without pitfalls. Here we discuss a number of these
issues and ways to circumvent or minimise them.

Stimulus correlations

In a controlled experimental setting, one attempts to
eliminate any confounding stimulus features that may
be correlated with the hypothesised effect. For
example, in an experiment designed to study how the
brain responds to semantically incongruent words, sub-
jects may be presented with pairs of sentences that are
identical except for a single word, which is either congru-
ent or incongruent with the rest of the sentence. Because
all but one of the words in each sentence are fixed across
the two conditions, this design reduces the correlation
between the variable of interest (whether the word is
semantically congruent) and other properties of the
stimuli. In a natural language experiment this type of
control is, by definition, impossible. Any hypothesised
effect in natural language will invariably be correlated
with one or more confounding variables. This limits the
effectiveness of simple statistical tools such as t-tests
for analyzing data from natural stimulus experiments.

However, encoding models embody the solution to
the problem of confounding variables: regression analy-
sis. Entering confounding variables into a regression
analysis along with the variables of interest can disentan-
gle the contributions of each to the total recorded brain
response. This is possible for any confounding variable,
as long as that variable can be quantified and included
in the model. Furthermore, the degree to which any
two variables are confounded, and thus the uncertainty
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in how to apportion variance between them, can be
quantified by examining posterior distributions in a
Bayesian linear regression setting.

In most situations the virtual control offered by
regression can suffice to de-confound the variables of
interest. However it is possible that a variable of interest
and confounding variable are too highly correlated for
regression to be effective. One strategy to deal with this
situation is to simply increase the size of the stimulus
set. However, this can be expensive and time-consuming.
Another possible strategy is to redesign the natural stimu-
lus set by oversampling natural stimuli that break the
undesired correlation. However, this has the potential to
distort the parameters learned in regression models.

Low power for rare variables

One caveat for natural stimulus experiments is that they
have low power for inferring how the brain responds to
variables that naturally have a low rate of occurrence. For
example, the phoneme “ʒ” (ARPABET = “ZH”, as in
“vision”, “collusion”, and “mirage”) appears much less fre-
quently in natural English speech than most other pho-
nemes. Having fewer occurrences leads to noisier
estimates of how the brain responds, since there are
fewer responses that can be averaged. One strategy for
dealing with this problem is to oversample natural
stimuli that contain the rare variables. This strategy was
taken in the TIMIT acoustic-phonetic database, where
“phonetically diverse” sentences were designed to
sample the distribution of all phonemes in English,
including rare phonemes and phoneme combinations,
more often than they would normally be seen in truly
natural speech (Garofolo, Lamel, Fisher, Fiscus, & Pallett,
1993). However, similar to oversampling uncorrelated
stimuli, this has the potential to distort regression par-
ameters. The safer, albeit more expensive, option is to
simply increase the size of the stimulus.

Limited stimulus domain

Any natural stimulus experiment will invariably draw
stimuli from within a particular domain, such as autobio-
graphical stories (Huth et al., 2016) or a fictional narrative
(Di Liberto et al., 2015; Wehbe et al., 2014). Depending on
the particular properties of that domain, this has the
potential to limit generalizability. Besides the obvious
solution of using stimuli from as many domains as poss-
ible, there is little that can be done to mitigate this
problem. Thus it is important that this issue is acknowl-
edged and discussed. In addition, for some experimental
situations, such as working with children or in patient
populations where time is limited or data collection is

otherwise more difficult, natural stimulus selection
must be done carefully in order to maximise the prob-
ability of being able to fit the models of interest.

Splitting the difference: manipulating natural
language stimuli

While using completely naturalistic stimuli has some dis-
advantages as described above, researchers have also
made significant progress by taking naturalistic stimuli
and manipulating them in specific ways in order to
address specific questions. These questions have
included the relative separability of acoustic-phonetic
and prosodic information (Tang et al., 2017), how com-
prehension affects language representation (Adank &
Devlin, 2010; Broderick, Anderson, Di Liberto, Crosse, &
Lalor, 2018; Peelle, Gross, & Davis, 2013), how degrading
stimuli by adding noise influences specific feature rep-
resentations (Di Liberto, Crosse, & Lalor, 2018; Ding &
Simon, 2013), how natural stimulus statistics influence
the ability to segregate simultaneous speech streams
(Popham, Boebinger, Ellis, Kawahara, & McDermott,
2018), how temporal structure affects speech processing
(Lerner et al., 2011; Overath, McDermott, Zarate, &
Poeppel, 2015), and how prior knowledge affects rep-
resentations of previously incomprehensible stimuli
(Davis & Johnsrude, 2007; Di Liberto, Lalor, & Millman,
2018; Holdgraf et al., 2016; Khoshkhoo et al., 2018),
among many others. In each of these studies, natural
language stimuli were systematically manipulated in
order to address a specific question. In Tang et al., for
example, natural sentences were manipulated so that
only the pitch information was changed in order to dis-
entangle the contributions of phonetic feature infor-
mation that were invariant to pitch. This manipulation
effectively decorrelates some aspects of the stimuli that
might be more correlated in a purely natural experiment.
In Popham et al., natural sentences were manipulated to
change a single harmonic such that utterances were per-
ceived as “inharmonic”, which resulted in increased
difficulty in separating speech streams with this type of
information. In Lerner et al. and Overath et al., the
amount of temporal information presented to the audi-
tory system was manipulated either by scrambling
natural stimuli at different time scales, or by constructing
“sound quilts” from natural stimuli with varying segment
length. In Khoshkoo et al. and Holdgraf et al., the
researchers showed that a synthesised incomprehensi-
ble stimulus can be repeated after presentation of the
original natural speech, and top-down expectations of
the speech percept will both “fill in” what the listener
hears as well as influence brain activity that reflects
this. These studies complement both pure natural
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language and highly controlled experiments and provide
the best of both worlds when a specific question is to be
addressed.

What have we learned from natural language
studies?

Although the majority of research on how the brain pro-
cesses language continues to use controlled stimuli, a
number of studies over the past few decades have
used natural language. While these studies explored
many different questions, here we wish to highlight
three overarching themes that natural language studies
have helped elucidate.

First, one major difference between results from
natural language and traditional studies is the anatom-
ical extent of language-related activity in the brain. Stat-
istical contrasts employed in controlled studies typically
identify a few brain areas at a time, with some
language-specific areas such as Wernicke’s and Broca’s
showing up in many studies. Studies may even restrict
their analyses to predefined regions of interest (ROIs),
usually in order to maximise statistical power. Natural
language studies, on the other hand, often reveal
much more widespread responses to language (Huth
et al., 2016; Lerner et al., 2011). One important study
used inter-subject correlation to determine which areas
respond strongly to single words, sentences, or coherent
narratives (Lerner et al., 2011). That study showed that
narratives elicited the most widespread responses, fol-
lowed by sentences, and then words. Another study
showed that many or most of the brain areas that
respond to narratives are actually selective for certain
categories of words, or semantic domains (Huth et al.,
2016). Similar results can only be obtained from con-
trolled studies by way of meta-analyses that combine
information from many studies (Binder et al., 1997,
2009). And while the brain areas identified as responding
to language in these studies include many that may be
considered “multi-purpose” rather than “language-
specific” (Fedorenko, Behr, & Kanwisher, 2011), these
results still highlight an important difference between
data collected using controlled and natural stimuli.

A second and related point is that studies using
natural language seem to elicit responses that are con-
siderably less left-lateralized than those seen in tra-
ditional studies. The idea that the left cerebral
hemisphere is specialised for language and the right is
not has been pervasive in language neuroscience since
the nineteenth century (Berwick, Friederici, Chomsky, &
Bolhuis, 2013; Geschwind, 1970; Wada & Rasmussen,
1960; Wernicke, 1970). Empirical studies have generally
shown a left hemisphere dominance for language

perception and production (see review in (Price, 2010)).
On the other hand, research employing simple word
stimuli originally localised prosodic and “emotional”
content of speech to the right hemisphere (Schirmer &
Kotz, 2006; Van Lancker & Fromkin, 1973). Recent exper-
iments have instead shown that natural language com-
prehension (and coordination between speech
perception and production) involves bilateral networks
(Belin, Zatorre, Lafaille, Ahad, & Pike, 2000; Cogan et al.,
2014; Hamilton et al., 2018; Huth et al., 2016; Jung-
Beeman, 2005; Lerner et al., 2011; Obleser, Eisner, &
Kotz, 2008), and that prosodic information is also pro-
cessed bilaterally (Tang et al., 2017). Notably, one of
the largest differences between experiments using
natural stimuli vs. simple word or syllable stimuli is that
the extent of activation and the involvement of higher
order cortical areas is much greater when stimuli are
meaningful and have long term structure.

Third, natural language experiments that employed
voxelwise encoding models have proven highly
efficient at answering—in one experiment—questions
that would have required many traditional experiments.
In (Wehbe et al., 2014), data collected while subjects read
chapters from Harry Potter was used to explore represen-
tations of syntax, named entities, and semantic meaning.
This study was able to compare the relative contributions
of these different variables to brain responses because all
the variables were present in the same set of natural
stimuli. In (de Heer et al., 2017), data collected while sub-
jects listened to stories from The Moth Radio Hour were
used to compare spectrotemporal, phonemic, and
semantic representations. In (Huth et al., 2016), the
same data as in (de Heer et al., 2017) were used to
compare representations of dozens of different semantic
categories. In (Crosse, Di Liberto, & Lalor, 2016), EEG was
collected while participants viewed natural audiovisual
stimuli with varying levels of noise to examine how
visual speech enhances auditory representations. In (Bro-
derick et al., 2018), the same data as in (Crosse, Di Liberto,
& Lalor, 2016) were used to look at the effect of intellig-
ibility of these stimuli on semantic representations in the
brain. The same could be done using traditional exper-
imental designs and analyses, but likely have required
many times more data, and would require that the cat-
egories were pre-specified. These examples show how
efficient natural language experiments can be for explor-
ing many different questions using a single dataset.

Conclusion

In this paper we have outlined a number of issues sur-
rounding the use of natural language stimuli in neuro-
science experiments. Natural language has a number of
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clear advantages over traditional controlled stimuli, and a
number of downsides. Until recently, it was impossible to
take advantage of natural language stimuli and difficult to
mitigate their shortcomings. However, explosive growth
in computational resources, dataset size, and data
quality have brought these techniques within reach of
all researchers. In particular, sophisticated computational
and statistical techniques that were all but impossible 20
years ago can be done on a laptop today. We want to
emphasise that the goal of this paper is not to cast asper-
sions on research that was done in the past, but to encou-
rage language researchers to think hard about whether a
natural language approach could benefit their research
questions.
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